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Messaging
How messaging emerged as the dominant paradigm in the Internet-age



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 5

Client Server

Request

Response

Client/Server
1. Client makes a request to the server

2. Server responds to requests
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Client Server

Request

Response

Distinct Roles: Client and Server
Client initiates interaction

Server is passive



Types of Client/Server Requests
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Client Server

Do something for me

There you go, it’s done

Request an action – i.e. issue a command



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 9

Client Server

Get that data I want

Here you go, here’s that data

Issue a query – i.e. ask for some data set
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Client Server

Something’s happened

Okay, thanks for letting me know

Send notification – i.e. let server know of some event
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With Messaging…
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Client Server

Client & Server Roles change

Send Message

Okay
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Producer Consumer

Send Message

Client & Server Roles change
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Producer Consumer

No longer Client/Server but…
Producer/Consumer
Supplier/Consumer

Publisher/Subscriber
Talker/Listener

Send Message
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Producer Consumer

Roles are reversible and interchangeable
Roles are variable and dynamic

Send Message

Consumer Producer

Send Message



Messaging Characteristics
Concepts & Conventions
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Messaging Characteristics

• Message

• Event-based

• Producer/Consumer Roles

• Push/Pull Notification Model

• Decoupled

• Not a request/response

• Often one-way call

• May be sent asynchronously

• Event dispatching queue

• Event receiving queue
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Messaging Characteristics

• Message

• Event-based

• Producer/Consumer Roles

• Push/Pull Notification Model

• Decoupled

• Event-based Modelling

• Sending ‘notification’ about event that 
has occurred on the system

• Simple Notification:- raw notification

• i.e. force other party to invalidate 
cache & issue new request

• e.g. user acknowledged alert

• Smart Notification:- contains update 
details

• i.e. enough info to update cache

• e.g. alert id=132, status=ack
© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 18



Messaging Characteristics

• Message

• Event-based

• Producer/Consumer Roles

• Push/Pull Notification Model

• Decoupled

• Roles are not reserved – any element 
can be a producer or a consumer

• Any element can and typically are both 
producer and consumer
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Messaging Characteristics

• Message

• Event-based

• Producer/Consumer Roles

• Push/Pull Notification Model

• Decoupled

• Push Model - Events are pushed by the 
producer/supplier/publisher/talker

• Pull Model – Events are pulled by the 
consumer/subscriber/listener

• Hybrid: Event Channels allow Publisher 
push events and Consumer pull events
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Messaging Characteristics

• Message

• Event-based

• Producer/Consumer Roles

• Push/Pull Notification Model

• Decoupled

• Producers and Consumers need not 
know about each other & can be 
decoupled

• Event Channel acts as a buffer, isolating 
Producers from Consumers & vice-versa

• Infers asynchronous event flow

• Typically infers queues 

• receiving/dispatching
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Notification Models
Push-Event & Pull-Event
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Push Event Model
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Producer Consumer

Push Message

OK

Push Message

OK

Push Message

OK

Flow of event
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Producer Consumer

Push
Consumer 

Push
Supplier 

Flow of events

Push
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Producer Consumer

Push
Consumer 

Push
Supplier 

Proxy
Push

Supplier 

Proxy
Push

Consumer 

Push



Pull Event Model
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Producer Consumer

Pull Message

OK

Pull Message

OK

Pull Message

OK

Flow of event
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Producer Consumer

Pull
Consumer 

Pull
Supplier 

Flow of events

Pull
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Producer Consumer

Pull
Consumer 

Pull
Supplier 

Proxy
Pull

Supplier 

Proxy
Pull

Consumer 

Pull



Event Channel
Messaging with Event Services & Brokers
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Notifying Consumers
Client → Server
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Publisher Consumer

Push Event 

OK
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Publisher Consumer

Consumer

Consumer



Notifying Consumers
Server → Clients
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Client Server

Something’s happened

Client

Client



Messaging Challenges

• Obtain list of consumers 

• i.e. interested parties

• Manage list of consumers 

• Add new subscribers

• Remove existing subscribers

• Timely operation

• i.e. cycle through list ensuring each 
consumer is sent message

• Last recipient versus first recipient

• i.e. Time sensitive messages (e.g. 
Stock Prices)

• Consumers blocked while message 
is being received

• Thread used to receive message is 
thread that reacts to message and 
does work => Delay sender

• Messaging Convention: Yield 

• Consumers consume messages at 
different rates

• Events could be time-sensitive or 
coordinated

• How to manage?
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Thread-per-Consumer Model
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Client

Server
Client

Client



Thread-per-Consumer Model

Advantages

• All Consumers sent event at the 
same time*

• Differing Consumer consumption 
rates handled with dedicated 
queues

Disadvantages

• Complexity – More complex 
programming model

• Concurrency control for 
adding/removing items to/from queue

• Adding/Removing Consumers

• Producer memory occupied

• Risk of queue backlog

• Error Handling – Replay requests

• Delayed Consumption - Historic events
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Event Channel
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Producer Consumer

Push
Consumer 

Push
Supplier 

Proxy
Push

Supplier 

Proxy
Push

Consumer 
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Producer Consumer

Push
Consumer 

Push
Supplier 

Event Channel

Proxy
Push

Consumer 

Proxy
Push

Supplier 

Flow of events



Event Channel Multicast Mechanism
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Producer Consumer

Push
Consumer 

Push
Supplier 

Event Channel

Proxy
Push

Consumer 

Proxy
Push

Supplier 

Push
Consumer 

Proxy
Push

Supplier 

Push
Consumer Proxy

Push
Supplier 



Event Channel + Message Store = Guaranteed Delivery
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Producer Consumer

Push
Consumer 

Push
Supplier 

Event Channel

Proxy
Push

Consumer 

Proxy
Push

Supplier 

Message
Store



IPC Mechanics
Synchronous versus Asynchronous IPC
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Synchronous Client/Server Call
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Client Server Database

 Request 

selfMessage

 Confirmation 

 Database Write 

 Response 

 Database Lookup 

 Results Set 

selfMessage

selfMessage

Query Server

 Look up

 Results 



Synchronous Client/Server Call

Advantages

• Simpler Programming Model

• Synchronized access

• Avoid any threading or concurrency 
control issues

• Familiar Programming Model

• IPC Request/Response similar to 
local function call (i.e. RPC)

Disadvantages

• Blocking

• Surrender Control

• i.e. Unable to do any work on 
blocked call

• Possibly poorer UX

• e.g. GUI hung while waiting for a 
response
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Asynchronous Client/Server Call
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Client Server Database

 Request 

selfMessage

 Confirmation 

 Database Write 

 Response 

 Database Lookup 

 Results Set 

selfMessage

selfMessage

Query Server

 Look up

 Results 



Asynchronous Client/Server Call

Advantages

• Non-Blocking

• Caller (caller thread) is free to do 
other work

• More efficient use of thread

• More responsive UI

Disadvantages

• More complex programming model

• Need to employ thread concurrency 
controls

• Need to co-ordinate processing of 
response

• i.e. Need to ‘check back’ to see a 
response has been received and is 
ready to be processed

• Correlation

• May need to match specific response 
with corresponding request
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Middleware Design Patterns
Smart Proxy
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Smart Proxy
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Client Server

Proxy
Object Concrete 

Object



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 58

Client Server

Proxy
Object Concrete 

Object

Smart
Proxy
Object
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Client Server

Proxy
Object Concrete 

Object

Smart
Proxy
Object
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Client Server

Proxy
Object Concrete 

Object

Smart
Proxy
Object

Concrete 
Object
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Client Server

Proxy
Object Concrete 

Object

Smart
Proxy
Object

0110 1001 0110 1110
0110 1011 0110 1011
1100 1111 0100 1010
1110 0010 0110 1010



Smart Proxy Requirements

• Encapsulation – The caller should not be aware that a smart-proxy is in effect

• Smart-Proxy must implement all interfaces of original proxy

• May need to delegate to original proxy

• Creation of Smart Proxy should be transparent 

• Need to rely on a Creation Pattern to ensure Smart Proxy is created in place of the 
original proxy
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Smart Proxy

Advantages

• Deploy server-oriented logic

• Save unnecessary round-trip calls

• Buffer/Cache expensive results

Disadvantages

• Custom coding likely required

• Need to make available to client-side 
developers

• May be better to load-balance on 
server/cloud

• Need to invalidate cache!
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Smart Proxy + Callback

• Implement a Callback mechanism to allow Server to communicate with Client

• e.g. Invalidate Cache
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Client Server

Proxy
Object Concrete 

Object

0110 1001 0110 1110
0110 1011 0110 1011
1100 1111 0100 1010
1110 0010 0110 1010

Smart
Proxy
Object

Callback interface



Callback at Scale
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Client Server

Concrete 
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Client Server

Concrete 
Object
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Client Server

Concrete 
Object

CB
Proxy 
Push

Supplier

CB

CB

Proxy 
Push

Supplier

Proxy 
Push

Supplier

Event Channel

Proxy 
Push

Consumer

Proxy 
Object

Proxy 
Object

Proxy 
Object



Programming
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Code Demo
MQTT Publisher & Subscriber



Q&A
Discussion Time



Recommended Reading

• ‘Patterns of Enterprise Application Architecture’ by Martin Fowler

• CORBA Event Service

• http://www.omg.org/spec/EVNT/

• Chapter on CORBA Event Service in ‘Instant CORBA’ by Orfali et al

• MQTT Example Code

• https://github.com/donnachaforde/example-mqtt

• HiveMQTT

• https://www.hivemq.com/

• Eclipse Paho Java Client

• https://www.eclipse.org/paho/clients/java/
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Thank You
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