
Software Architecture & 
Design

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 1



Messaging
Event-based Architecture



Contents

• Messaging Overview

• Messaging Characteristics

• Notification Models

• Event Channel

• IPC Mechanics

• Middleware Design Patterns

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 3



Messaging
How messaging emerged as the dominant paradigm in the Internet-age



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 5

Client Server

Request

Response

Client/Server
1. Client makes a request to the server

2. Server responds to requests



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 6

Client Server

Request

Response

Distinct Roles: Client and Server
Client initiates interaction

Server is passive



Types of Client/Server Requests

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 7



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 8

Client Server

Do something for me

There you go, it’s done

Request an action – i.e. issue a command



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 9

Client Server

Get that data I want

Here you go, here’s that data

Issue a query – i.e. ask for some data set



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 10

Client Server

Something’s happened

Okay, thanks for letting me know

Send notification – i.e. let server know of some event



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 11

With Messaging…



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 12

Client Server

Client & Server Roles change

Send Message

Okay

 



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 13

Producer Consumer

Send Message

Client & Server Roles change



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 14

Producer Consumer

No longer Client/Server but…
Producer/Consumer
Supplier/Consumer

Publisher/Subscriber
Talker/Listener

Send Message



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 15

Producer Consumer

Roles are reversible and interchangeable
Roles are variable and dynamic

Send Message

Consumer Producer

Send Message



Messaging Characteristics
Concepts & Conventions

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 16



Messaging Characteristics

• Message

• Event-based

• Producer/Consumer Roles

• Push/Pull Notification Model

• Decoupled

• Not a request/response

• Often one-way call

• May be sent asynchronously

• Event dispatching queue

• Event receiving queue

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 17



Messaging Characteristics

• Message

• Event-based

• Producer/Consumer Roles

• Push/Pull Notification Model

• Decoupled

• Event-based Modelling

• Sending ‘notification’ about event that 
has occurred on the system

• Simple Notification:- raw notification

• i.e. force other party to invalidate 
cache & issue new request

• e.g. user acknowledged alert

• Smart Notification:- contains update 
details

• i.e. enough info to update cache

• e.g. alert id=132, status=ack
© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 18



Messaging Characteristics

• Message

• Event-based

• Producer/Consumer Roles

• Push/Pull Notification Model

• Decoupled

• Roles are not reserved – any element 
can be a producer or a consumer

• Any element can and typically are both 
producer and consumer

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 19



Messaging Characteristics

• Message

• Event-based

• Producer/Consumer Roles

• Push/Pull Notification Model

• Decoupled

• Push Model - Events are pushed by the 
producer/supplier/publisher/talker

• Pull Model – Events are pulled by the 
consumer/subscriber/listener

• Hybrid: Event Channels allow Publisher 
push events and Consumer pull events

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 20



Messaging Characteristics

• Message

• Event-based

• Producer/Consumer Roles

• Push/Pull Notification Model

• Decoupled

• Producers and Consumers need not 
know about each other & can be 
decoupled

• Event Channel acts as a buffer, isolating 
Producers from Consumers & vice-versa

• Infers asynchronous event flow

• Typically infers queues 

• receiving/dispatching

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 21



Notification Models
Push-Event & Pull-Event

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 22



Push Event Model

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 23



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 24

Producer Consumer

Push Message

OK

Push Message

OK

Push Message

OK

Flow of event



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 25

Producer Consumer

Push
Consumer 

Push
Supplier 

Flow of events

Push



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 26

Producer Consumer

Push
Consumer 

Push
Supplier 

Proxy
Push

Supplier 

Proxy
Push

Consumer 

Push



Pull Event Model

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 27



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 28

Producer Consumer

Pull Message

OK

Pull Message

OK

Pull Message

OK

Flow of event



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 29

Producer Consumer

Pull
Consumer 

Pull
Supplier 

Flow of events

Pull



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 30

Producer Consumer

Pull
Consumer 

Pull
Supplier 

Proxy
Pull

Supplier 

Proxy
Pull

Consumer 

Pull



Event Channel
Messaging with Event Services & Brokers

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 31



Notifying Consumers
Client → Server

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 32



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 33

Publisher Consumer

Push Event 

OK



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 34

Publisher Consumer

Consumer

Consumer



Notifying Consumers
Server → Clients

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 35



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 36

Client Server

Something’s happened

Client

Client



Messaging Challenges

• Obtain list of consumers 

• i.e. interested parties

• Manage list of consumers 

• Add new subscribers

• Remove existing subscribers

• Timely operation

• i.e. cycle through list ensuring each 
consumer is sent message

• Last recipient versus first recipient

• i.e. Time sensitive messages (e.g. 
Stock Prices)

• Consumers blocked while message 
is being received

• Thread used to receive message is 
thread that reacts to message and 
does work => Delay sender

• Messaging Convention: Yield 

• Consumers consume messages at 
different rates

• Events could be time-sensitive or 
coordinated

• How to manage?

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 37



Thread-per-Consumer Model

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 38



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 39

Client

Server
Client

Client



Thread-per-Consumer Model

Advantages

• All Consumers sent event at the 
same time*

• Differing Consumer consumption 
rates handled with dedicated 
queues

Disadvantages

• Complexity – More complex 
programming model

• Concurrency control for 
adding/removing items to/from queue

• Adding/Removing Consumers

• Producer memory occupied

• Risk of queue backlog

• Error Handling – Replay requests

• Delayed Consumption - Historic events

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 40



Event Channel

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 41



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 42

Producer Consumer

Push
Consumer 

Push
Supplier 

Proxy
Push

Supplier 

Proxy
Push

Consumer 



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 43

Producer Consumer

Push
Consumer 

Push
Supplier 

Event Channel

Proxy
Push

Consumer 

Proxy
Push

Supplier 

Flow of events



Event Channel Multicast Mechanism

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 44



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 45

Producer Consumer

Push
Consumer 

Push
Supplier 

Event Channel

Proxy
Push

Consumer 

Proxy
Push

Supplier 

Push
Consumer 

Proxy
Push

Supplier 

Push
Consumer Proxy

Push
Supplier 



Event Channel + Message Store = Guaranteed Delivery

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 46



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 47

Producer Consumer

Push
Consumer 

Push
Supplier 

Event Channel

Proxy
Push

Consumer 

Proxy
Push

Supplier 

Message
Store



IPC Mechanics
Synchronous versus Asynchronous IPC

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 48



Synchronous Client/Server Call

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 49



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 50

Client Server Database

 Request 

selfMessage

 Confirmation 

 Database Write 

 Response 

 Database Lookup 

 Results Set 

selfMessage

selfMessage

Query Server

 Look up

 Results 



Synchronous Client/Server Call

Advantages

• Simpler Programming Model

• Synchronized access

• Avoid any threading or concurrency 
control issues

• Familiar Programming Model

• IPC Request/Response similar to 
local function call (i.e. RPC)

Disadvantages

• Blocking

• Surrender Control

• i.e. Unable to do any work on 
blocked call

• Possibly poorer UX

• e.g. GUI hung while waiting for a 
response

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 51



Asynchronous Client/Server Call

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 52



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 53

Client Server Database

 Request 

selfMessage

 Confirmation 

 Database Write 

 Response 

 Database Lookup 

 Results Set 

selfMessage

selfMessage

Query Server

 Look up

 Results 



Asynchronous Client/Server Call

Advantages

• Non-Blocking

• Caller (caller thread) is free to do 
other work

• More efficient use of thread

• More responsive UI

Disadvantages

• More complex programming model

• Need to employ thread concurrency 
controls

• Need to co-ordinate processing of 
response

• i.e. Need to ‘check back’ to see a 
response has been received and is 
ready to be processed

• Correlation

• May need to match specific response 
with corresponding request

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 54



Middleware Design Patterns
Smart Proxy

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 55



Smart Proxy

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 56



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 57

Client Server

Proxy
Object Concrete 

Object



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 58

Client Server

Proxy
Object Concrete 

Object

Smart
Proxy
Object



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 59

Client Server

Proxy
Object Concrete 

Object

Smart
Proxy
Object



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 60

Client Server

Proxy
Object Concrete 

Object

Smart
Proxy
Object

Concrete 
Object



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 61

Client Server

Proxy
Object Concrete 

Object

Smart
Proxy
Object

0110 1001 0110 1110
0110 1011 0110 1011
1100 1111 0100 1010
1110 0010 0110 1010



Smart Proxy Requirements

• Encapsulation – The caller should not be aware that a smart-proxy is in effect

• Smart-Proxy must implement all interfaces of original proxy

• May need to delegate to original proxy

• Creation of Smart Proxy should be transparent 

• Need to rely on a Creation Pattern to ensure Smart Proxy is created in place of the 
original proxy

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 62



Smart Proxy

Advantages

• Deploy server-oriented logic

• Save unnecessary round-trip calls

• Buffer/Cache expensive results

Disadvantages

• Custom coding likely required

• Need to make available to client-side 
developers

• May be better to load-balance on 
server/cloud

• Need to invalidate cache!

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 63



Smart Proxy + Callback

• Implement a Callback mechanism to allow Server to communicate with Client

• e.g. Invalidate Cache

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 64



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 65

Client Server

Proxy
Object Concrete 

Object

0110 1001 0110 1110
0110 1011 0110 1011
1100 1111 0100 1010
1110 0010 0110 1010

Smart
Proxy
Object

Callback interface



Callback at Scale

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 66



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 67

Client Server

Concrete 
Object

CB

Proxy 
ObjectCB

CB

Proxy 
Object

Proxy 
Object



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 68

Client Server

Concrete 
Object

CB

Proxy 
ObjectCB

CB

Proxy 
Object

Proxy 
Object



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 69

Client Server

Concrete 
Object

CB
Proxy 
Push

Supplier

CB

CB

Proxy 
Push

Supplier

Proxy 
Push

Supplier

Event Channel

Proxy 
Push

Consumer

Proxy 
Object

Proxy 
Object

Proxy 
Object



Programming

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 70

Code Demo
MQTT Publisher & Subscriber



Q&A
Discussion Time



Recommended Reading

• ‘Patterns of Enterprise Application Architecture’ by Martin Fowler

• CORBA Event Service

• http://www.omg.org/spec/EVNT/

• Chapter on CORBA Event Service in ‘Instant CORBA’ by Orfali et al

• MQTT Example Code

• https://github.com/donnachaforde/example-mqtt

• HiveMQTT

• https://www.hivemq.com/

• Eclipse Paho Java Client

• https://www.eclipse.org/paho/clients/java/

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 72

http://www.omg.org/spec/EVNT/
https://github.com/donnachaforde/example-mqtt
https://www.hivemq.com/
https://www.eclipse.org/paho/clients/java/


Thank You



© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 74


