Software Architecture &
Design

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

Wﬂ

Messaging

EEEEE -based Architecture

4 N =~
el sl "e_—e L W e ¥

Contents

* Messaging Overview

* Messaging Characteristics
* Notification Models

* Event Channel

* IPC Mechanics

* Middleware Design Patterns

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

Messaging

How messaging emerged as the dominant paradigm in the Internet-age

Request

Response

Client/Server
1. Client makes a request to the server
2. Server r@smwdg to requests

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 5

Request

Response

Dlstinct Roles: Client and Server
Cllent nitiates tnteractlon
Server LS pagslve

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 6

Types of Client/Server Requests

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

Do something for me

There you go, it’s done

Reguest an Actlom — L.e. LSSUE O COMMAND

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 8

Get that data | want

Here you go, here’s that data

lssue o query - Le. ask for some data set

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 9

Something’s happened

Okay, thanks for letting me know

Send notifieation - L.e. Let server know of sonee event

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 10

With Messaging,...

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

1"

Send Message

Client § Server Roles change

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 12

Send Message

Client § Server Roles change

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 13

Send Message

No Longer Client/Senver but...
Producer/Consunter
Supplier/Consumer

Publisher/Sulbsceriber
Tallker/Listener

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 14

Send Message

Send Message

Roles are veversible and tnterchangeable
Roles ave variable and dynamic

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 15

Messaging Characteristics

Concepts & Conventions

Messaging Characteristics

* Message

* Event-based

* Producer/Consumer Roles

* Push/Pull Notification Model

* Decoupled

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

Not a request/response

Often one-way call
May be sent asynchronously
Event dispatching queue

Event receiving queue

17

Messaging Characteristics

* Message

* Event-based

* Producer/Consumer Roles

* Push/Pull Notification Model

* Decoupled

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

Event-based Modelling

Sending ‘notification’ about event that
has occurred on the system

Simple Notification:- raw notification

i.e. force other party to invalidate
cache & issue new request

e.g. user acknowledged alert

Smart Notification:- contains update
details

i.e. enough info to update cache

e.g. alert id=132, status=ack

Messaging Characteristics

* Message

* Event-based

* Producer/Consumer Roles

* Push/Pull Notification Model

* Decoupled

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

Roles are not reserved - any element
can be a producer or a consumer

Any element can and typically are both
producer and consumer

19

Messaging Characteristics

* Message

* Event-based

* Producer/Consumer Roles

* Push/Pull Notification Model

* Decoupled

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

Push Model - Events are pushed by the
producer/supplier/publisher/talker

Pull Model - Events are pulled by the
consumer/subscriber/listener

Hybrid: Event Channels allow Publisher
push events and Consumer pull events

20

Messaging Characteristics

* Message

* Event-based

* Producer/Consumer Roles

* Push/Pull Notification Model

* Decoupled

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

Producers and Consumers need not
know about each other & can be
decoupled

Event Channel acts as a buffer, isolating
Producers from Consumers & vice-versa

Infers asynchronous event flow

Typically infers queues

receiving/dispatching

21

Notification Models

Push-Event & Pull-Event

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

22

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

Push Event Model

23

Push Message

Push Message

Push Message

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 24

Producer Consumer

Push

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 25

Producer Consumer

Push

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 26

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

Pull Event Model

27

Pull Message

Pull Message

Pull Message

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 28

Producer Consumer

Pull

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 29

Producer Consumer

Pull

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 30

Event Channel

Messaging with Event Services & Brokers

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

31

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

Notifying Consumers
Client -> Server

32

Push Event

OK

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 33

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 34

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

Notifying Consumers
Server - (Clients

35

Something’s happened

' W
Okay thanks for letting me kno

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 36

Messaging Challenges

e Obtain list of consumers

* i.e.interested parties

* Manage list of consumers
* Add new subscribers

* Remove existing subscribers

* Timely operation

* i.e. cycle through list ensuring each
consumer is sent message

* Last recipient versus first recipient

* i.e. Time sensitive messages (e.g.
Stock Prices)

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

* Consumers blocked while message
is being received

* Thread used to receive message is
thread that reacts to message and
does work => Delay sender

* Messaging Convention: Yield
* Consumers consume messages at
different rates

* Events could be time-sensitive or
coordinated

* How to manage?

37

Thread-per-Consumer Model

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

38

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 39

Thread-per-Consumer

Advantages

* All Consumers sent event at the
same time*

* Differing Consumer consumption
rates handled with dedicated
queues

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

Model

Disadvantages

* Complexity — More complex
programming model

e Concurrency control for
adding/removing items to/from queue

* Adding/Removing Consumers

* Producer memory occupied

* Risk of queue backlog
* Error Handling — Replay requests

* Delayed Consumption - Historic events

40

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

Event Channel

41

Producer Consumer

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 42

Producer Event Channel Consumer

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 43

Event Channel Multicast Mechanism

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

44

Producer Event Channel

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

Event Channel + Message Store

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

Guaranteed Delivery

46

Producer Event Channel Consumer

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 47

IPC Mechanics

Synchronous versus Asynchronous IPC

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

48

Synchronous Client/Server Call

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

49

Client

Request

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

<<—— — — — - ResultsSet — — — — — —

4_

<_

Database

Database Lookup

selfMessage

selfMessage

<_ —

N

I

|

|

|
p L

Database Write

— — — - Confirmation

selfMessage

Query Server

<— ———————————— Results L

Synchronous Client/Server Call

Advantages Disadvantages

 Simpler Programming Model * Blocking

Synchronized access e Surrender Control

\Yelle any threading or concurrency + i.e. Unable to do any work on
control issues
blocked call

* Familiar Programming Model + Possibly poorer UX

* |IPC Request/Response similar to

local function call (i.e. RPC) * e.g. GUl hung while waiting for a

response

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 51

Asynchronous Client/Server Call

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

52

Client Database Query Server

< —— —— — - ResultsSet — — — — — —

selfMessage

[
I
I
I
I
I
I
I
I
— I
I
I
I
I
I
I
I
I
I

selfMessage

4_

Database Write

< —————— Confirmation

\ selfMessage

<— ———————————— Results L

| |

| |

| |
Request: P> |

I—-—I Database Lookup L

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

Asynchronous Client/Server Call

Advantages

* Non-Blocking

* Caller (caller thread) is free to do
other work

* More efficient use of thread

* More responsive Ul

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

Disadvantages

* More complex programming model

* Need to employ thread concurrency
controls

* Need to co-ordinate processing of
response

* i.e. Need to ‘check back’ to see a
response has been received and is
ready to be processed

* Correlation

* May need to match specific response
with corresponding request

54

Middleware Design Patterns

Smart Proxy

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

Smart Proxy

56

Client Server

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 57

Client Server

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 58

Client Server

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 59

Client Server

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 60

Client Server

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 61

Smart Proxy Requirements

* Encapsulation — The caller should not be aware that a smart-proxy is in effect

* Smart-Proxy must implement all interfaces of original proxy

* May need to delegate to original proxy

* Creation of Smart Proxy should be transparent

* Need to rely on a Creation Pattern to ensure Smart Proxy is created in place of the
original proxy

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

62

Smart Proxy

Advantages
* Deploy server-oriented logic
* Save unnecessary round-trip calls

* Buffer/Cache expensive results

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

Disadvantages

Custom coding likely required

Need to make available to client-side
developers

May be better to load-balance on
server/cloud

Need to invalidate cache!

63

Smart Proxy + Callback

* Implement a Callback mechanism to allow Server to communicate with Client

* e.g. Invalidate Cache

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

64

Client Server

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 65

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

Callback at Scale

66

Client Server

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 67

Client Server

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 638

Client Event Channel Server

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 69

Programming

Coole Demo

METT Publisher § Subscriber

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

Q&A

Discussion Time

Recommended Reading

 ‘Patterns of Enterprise Application Architecture’ by Martin Fowler

CORBA Event Service
* http://www.omg.org/spec/EVNT/
* Chapter on CORBA Event Service in ‘Instant CORBA’ by Orfali et al

MQTT Example Code
* https://github.com/donnachaforde/example-mqtt

HiveMQTT

* https://www.hivemqg.com/

Eclipse Paho Java Client

* https://[www.eclipse.org/paho/clients/java/

© Copyright 2017-2018 - Donnacha Forde - All rights reserved. 72

http://www.omg.org/spec/EVNT/
https://github.com/donnachaforde/example-mqtt
https://www.hivemq.com/
https://www.eclipse.org/paho/clients/java/

Thank You

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

74

