Software Architecture & Design

© Copyright 2017-2018 - Donnacha Forde - All rights reserved.

Architecting for the Internet of Things (IoT)

Architecting for the Future

Contents

- Introduction
- The Internet of Things
- Discussion & Q&A

Internet of Things

Architecting for the Internet of Things

IoT Characteristics

- Large number of simple, inexpensive devices
 - Network connected
 - Edge-Connect enabled
- Produce low-level statistical data
 - E.g. Temperature, Humidity, Windspeed, Direction
- Sufficient data volume delivers statistical relevance
 - Pattern Determination
 - Identify anomalies

- Intelligence at the Edge (Smart Devices)
 - e.g. Gait Analysis by Video Cameras
 - e.g. License plate recognition
- Metering
 - Remotely Controlled

Smart Buildings

- Discrete event sources correlated & command-control
 - Provides 'richer' information
 - e.g.
 - Lighting motion sensors & HVAC
 - Lighting motion sensors & Intrusion systems
 - Fire Alarm systems & access-control systems

Source: https://www.researchgate.net/figure/Typical-application-for-BMS-SBMS_fig1_283545366

Managing IoT

- Systems Management
 - Management of devices on your IoT platform (e.g. provisioning, configuration)
 - Security (Authentication & Authorization)
- Messaging
 - Handling events at scale
 - Event routing
- Input streams
 - Correlation with external systems (e.g. weather)
 - Sentiment Analysis (e.g. Twitter)
 - Trend Analysis (e.g. Google Flu Trends)

IoT Challenges

- Interoperability
 - Competing Vendors
 - Exchange of data between vendors
- Connectivity
 - Older (non-smart) devices
 - Network Data Charges (3G/4G)

How to build an IoT platform

IoT Architecture Framework

- Different 'levels' of an IoT Architecture
- Different types of users/actors
 - Operators/Technicians
 - Network Administrators
 - Application Users
 - Data Scientists
- Multiple Applications to support
- Address scale

IoT Architecture Framework - Tiers

- Level o Network Management
 - Administer & Monitor the Sensor Fabric/Network
 - e.g. Gateway & Edge-Connected devices
- Level 1 Data & Event Integration (Domain & Event Models)
 - Administer & Monitor the Managed Domain
 - i.e. Sensor Devices
 - Low-tech devices \rightarrow High-tech devices
 - Assimilation, Routing & Persisting Event Data Points
 - Integration of data points \rightarrow Data Analytics

- Level 2 Systems Management
 - Common/Shared model versus Domain-Specific
 - e.g. Authentication, Alerts
 - UI, Server & Mobile Infrastructure
 - Systems Management Services (non-functional)
- Level 3 Platform
 - Scalability & Performance
 - Multi-tenancy
 - Separate/Individual Systems utilizing shared services
 - Global Analytics
 - Holistic + Historic

Summary

- Internet of Things
 - Large-scale distributed systems
 - Natural fit for Big Data
 - Analytics feeding into systems management

Thank You